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Angiotensin II receptor blockers (ARBs) 1 have aroused keen
interest as one of the most efficient antihypertensives

because of their high efficacy and safety (Scheme 1).1�4

To meet the huge demand for ARBs of more than 1000 t per
year used for the clinical treatment worldwide, intensive process
research has been conducted to achieve a more efficient and cost-
effective synthetic method. ARBs contain a biphenyltetrazole
framework as the key and common structural motif. However,
the previous synthetic methods have critical drawbacks of the
need of stoichiometric amounts of expensive and/or hazardous
organometallics such as Grignard reagents and boronic acids to
generate the fundamental biphenyltetrazole unit.1�7 Avoiding
potential hazards is a priority in addition to lowering costs in
industries.8,9 To address the challenge, the author has come up
with an idea to synthesize them through C�H activation.10�54

Despite growing amount of information on C�H activation, the
commercial application is still challenging. There exist such
significant drawbacks such as the need of large amounts of transition
metals10�54 and toxic chemicals like silver salts32,34,40,53,54 to
promote the key aryl�aryl coupling. Described herein is the
extremely efficient catalytic system for the C�H activation and
application of the technology to a practical synthesis of ARBs 1.

The strategy for the synthesis of ARBs 1 is outlined in
Scheme 2. The C�H bond R to the phenyltetrazole derivative
2 might be activated by means of chelation of Ru with the
tetrazole moiety which permits the coupling of 2 with aryl
bromide 3. The resulting biphenyl derivative 4 would readily
be converted to bromide 5 which, upon coupling with various
functionalized fragments (R-H) followed by deprotection, would
furnish ARBs 1 in a highly convergent manner.

The aryl�aryl coupling was first tested by the use of the
literature precedent catalyst and procedure.14 The protected
phenyltetrazole 2a55,56 was treated with aryl bromide 3 in the
presence of [RuCl2(benzene)]2 (6a) (Ru = 10 mol %) and
K2CO3 in NMP at 140 �C to afford the desired biphenyl 4a in
48% yield (Table 1, Entry 1). However, the price and the catalyst

Scheme 2. Strategy for the Synthesis of ARBs (1)

Scheme 1. Structures of Compounds 1
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ABSTRACT: An efficient protocol for C�H activation pro-
vided a greener and sustainable approach to angiotensin II
receptor blockers (ARBs). The use of PPh3 in a specific ratio to
inexpensive RuCl3 3 xH2O resulted in a discovery of an unpre-
cedentedly efficient catalytic system for C�H activation which
permitted a practical access to ARBs. The process is atom economical and much greener compared to the previous methods which
need stoichiometric amount of hazardous organometallics.
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loading of 6a is too high to be applied for commercial production.
More affordable [RuCl2(COD)]n 6b resulted in inadequate
improvement (63%, Table 1, Entry 2). RuCl2(PPh3)3 6c, a
stable catalyst obtained by the treatment of inexpensive RuCl3 3
xH2O with excess PPh3

57 was another option for considera-
tion and did give 4b though in a moderate yield (Table 1, Entry
3). In the meantime, it has been suggested in a recently
published literature that unstable catalyst species are expected
to provide higher rate acceleration since it would decrease the
activation energy by heightening the energy level of the ground
state.58 Taking the concept into consideration, the author
hypothesized experiments employing inexpensive RuCl3 3
xH2O (6d) with varying amount of PPh3 might result in a
discovery of a better catalytic system (Table 1, Entries 5�9).
Gratifyingly, as shown in Table 1 and Figure 1, the highest yield
(81%) using an extremely low catalyst loading (1.3 mol %) was

achieved at a specific ratio of PPh3/Ru = 1.8/1 (Table 1, Entry 7).
By either lowering or heightening the ratio, the yield remarkably
dropped down. The arylation via C�H activation employing
inexpensive RuCl3 3 xH2O (6d) has been reported,15,17 but com-
bination of 6d with a phosphine ligand has never been demon-
strated in this type of reaction.10�13,59 It is noteworthy that the
present reaction did not proceed well in the absence of PPh3
(Table 1, Entry 4). To the best of our knowledge, the catalyst
loading (1.3 mol %) achieved in this study represents the lowest
value reported so far in this type of the reaction.10�54,60 The
water in RuCl3 3 xH2O (6d) has a significant role for the reaction
because neither anhydrous RuCl3 (6e) nor 6e with external
addition of equal amount of water to that in 6d (i.e., 2.5 molar
equiv to Ru) catalyzed the reaction (Table 1, Entries 10 and
11).61 Another substrate 2c and 2d carrying a protective group
such as sterically more demanding DPM (diphenylmethyl)
group and Tri (trityl) group,5 respectively, were then tested.
However, the use of 2c and 2d gave either very poor yield or none
of the desired product 4c and 4d (Table 1, Entries 12 and 13).
The benzyl protecting group is thus deduced to be crucial and
most appropriate for protecting 5-phenyl-1H-tetrazole in the
biphenylation reaction.

The effect of the ligand on the reaction was further investi-
gated. As shown in Table 1, Entries 14�16, the steric bulk of the
ligand is quite sensitive to the reaction: the use of 2-Me-Ph3P
resulted in no conversion at all while 4-Me-Ph3P or 4-MeO-Ph3P

Table 1. Synthesis of Biphenyltetrazoles 4 through the C�H
Activation

entrya sub Ru cat.b ligand Ru (mol %) ligand/Ru yield (%)c

1 2a 6a PPh3 10 2.0 48d

2 2a 6b PPh3 10 2.0 63d

3 2b 6c 10 3.0 31

4 2b 6d 1.3 0 14

5 2b 6d PPh3 1.3 1.0 65

6 2b 6d PPh3 1.3 1.5 70

7 2b 6d PPh3 1.3 1.8 81

8 2b 6d PPh3 1.3 2.0 64

9 2b 6d PPh3 1.3 3.0 4

10 2b 6e PPh3 1.3 1.8 3e

11 2b 6e PPh3, H2O
f 1.3 1.8 3e

12 2cg 6d PPh3 1.3 2.0 19,e 9

13 2dg 6a PPh3 10 1.8 0

14 2b 6d P(2-MePh)3 1.3 1.8 0

15 2b 6d P(4-MePh)3 1.3 1.8 68

16 2b 6d P(4-MeOPh)3 1.3 1.8 71

17 2b 6d P(4-FPh)3 1.3 1.8 32

18 2b 6d P(4-CF3Ph)3 1.3 1.8 29

20 2b 6d PPh2Cy 1.3 1.8 45

21 2b 6d PCy3 1.3 1.8 17e

22 2b 6d XPhos 1.3 1.8 7e

23 2b 6d dppe 1.3 0.9 13e

aThe biphenylation conditions: 3 (1.1 equiv), K2CO3 (2 equiv), 140 �C.
b 6a: [RuCl2(benzene)]2, 6b: [RuCl2(COD)]n, 6c: RuCl2(PPh3)3, 6d:
RuCl3 3 xH2O, 6e: RuCl3.

cAssay yield measured by HPLC. d Isolated
yield purified by silica-gel column chromatography. eConversion
assayed by HPLC. f 2.5 equiv relative to 6e was added. g Prepared
according to the literature.62

Figure 1. Reaction profile of the biphenylation. The biphenylation
conditions: see Table 1, Entries 4�9.

Scheme 3. Synthesis of Valsartan (1a)
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gave slightly inferior yields compared to PPh3. Other phosphine
ligands carrying an electron-withdrawing group63 or an alkyl sub-
stituent or bidentate phosphine ligands in place of PPh3 resulted in
much less activity (Table 1, Entries 17�23). Simple and inexpensive
PPh3 is thus the optimal ligand for the biphenylation.

The obtained biphenyl 4b was readily converted to ARBs 1 as
exemplified by the synthesis of Valsartan (1a) (Scheme 3). The
biphenyl 4b was first converted to alcohol 7 and in situ bromi-
nated and condensed with L-valine benzyl ester. The product was
acylated and deprotected by transfer hydrogenation to furnish
Valsartan (1a) in excellent yield. It should be noticed that
proper selection of Pd�C is crucial for the clean deprotection
(Figure 2). The oxidized egg shell type Pd�C performed better
than thick shell oxidized or egg shell reduced counterparts.64 The
overall yield of 1a from readily available protected phenyltetra-
zole (2b) is 55% over 5 steps of reaction sequence.

In summary, a quite efficient catalytic system for the C�H
activation has been worked out and a practical synthesis of ARBs
1 has been accomplished through the C�H activation. The
process is very atom economical: avoiding the use of high
molecular weight materials that were not incorporated into the
final molecule thus being much shorter, more efficient, and
greener compared to the previous methods.65 The application
of the current catalytic system to other substrates to check the
scope and limitation and elucidation of the reaction mechanism
are under way which will be reported in due course.66
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